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Abstract
The energy spectra and wavefunctions of three electrons confined by a quasi-one-dimensional
Gaussian potential have been calculated and analyzed for three regimes of the strength of
confinement ωz , namely large (ωz = 5.0), medium (ωz = 1.0) and small (ωz = 0.1), by using
the full configuration interaction method. For large and medium ωz the energy spectrum shows
a band structure which is characterized by the polyad quantum number vp, while for small ωz it
is characterized by the extended polyad quantum number v∗

p . The wavefunctions of the quartet
states have been assigned uniquely by counting the number of nodal planes for the three normal
modes, namely, the center-of-mass, permutation and breathing modes. The energy levels for
small ωz form nearly degenerate triplets, each of which consists of two doublet states and one
quartet state. The nodal patterns of their wavefunctions in this small ωz regime are almost
identical to each other except for their phases. The origin of the tripling of energy levels and the
similarity of the wavefunctions for different spin states has been rationalized by using the
projection of one- and two-electron potentials onto the internal plane. Effects of anharmonicity
in the confining potential on the energy spectra and wavefunctions have also been examined.

(Some figures in this article are in colour only in the electronic version)

1. Introduction

Electrons confined in engineered low-dimensional nanospaces,
referred to as quantum dots or artificial atoms [1–4], are
known to have potential applicability to lasers [5, 6] and
quantum computers [7, 8], since their electronic properties
can be controlled by the size of the dots [9], their
shape [10, 11] and their dimensionality [12, 13]. It has been
demonstrated computationally that the energy-level structure
of quantum dots changes strongly for different strengths of
confinement [14, 15, 4, 16–18]. This is caused by a strong
variation of the contribution of electron–electron interaction to
the total energy with respect to the strength of confinement [4].
For the strong limit the confining potential dominates the
energy spectrum and the electron–electron interaction plays
only a minor role. For the weak limit of confinement, on the

other hand, the electron–electron interaction becomes so large
that it breaks the shell structure resulting from the confining
potential [19, 18] and gives rise to a new structure in the energy
spectrum as a result of Wigner crystallization [20].

In a previous study of this series [21], quantum dots have
been modeled by two interacting electrons confined in a quasi-
one-dimensional Gaussian potential [22, 23], and a detailed
analysis has been made of the wavefunctions in order to clarify
the relation between the form of the confining potential and
the resulting energy spectra and dynamics of the electrons
inside the dots. It has been shown in the study that the
variation of the energy spectrum for different strengths of
confinement can be understood in a unified way by counting
the number of nodes in the wavefunction for each state. It has
been also shown that anharmonicity in the Gaussian potential
introduces irregularities in the energy spectrum and that the
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wavefunctions of the corresponding states indicate localized
motion of electrons [21]. On the other hand, two-electron
quantum systems are not general multi-electron systems since
the orbital and spin parts of their wavefunctions are separated
from each other, and since after separating the center-of-mass
degree of freedom the number of internal degrees of freedom
of the electrons is limited to only one. Therefore, systems
with more than two electrons have to be studied in order to
understand the general trends in the energy spectrum of multi-
electrons confined in quasi-one-dimensional potential walls.

In the present study, aiming at the general understanding
of the energy spectrum and the dynamics of electrons of
multi-electron quantum dots, a detailed analysis has been
made of the system of three electrons confined in a quasi-
one-dimensional Gaussian potential in which the spatial and
orbital parts of the wavefunction are no longer separable
and the number of internal degrees of freedom is more
than one. The eigenvalues and wavefunctions of the three
electrons have been calculated by using the quantum chemical
full configuration interaction method employing a Cartesian
anisotropic Gaussian basis set with high angular momentum
functions [24]. The three-electron wavefunctions have been
plotted in a three-dimensional space and their nodal patterns
have been analyzed and used to interpret the energy spectra.
Atomic units are used throughout this paper.

2. Computational methodology

The Hamiltonian operator adopted in the present study is
a direct extension of the previous model [21] to the multi-
electron case, namely,

H =
N∑

i=1

[
−1

2
∇2

i

]
+

N∑

i=1

w(ri ) +
N∑

i> j

1

|ri − r j | , (1)

where N denotes the number of electrons. The one-electron
confining potential w(r) is the sum of an isotropic harmonic-
oscillator potential for the x and y directions and an attractive
Gaussian-type potential for the z direction and is given by

w(r) = 1

2
ω2

xy

[
x2 + y2

] − D exp

[
− ω2

z

2D
z2

]
. (2)

For a sufficiently large value of ωxy the electrons bound by
the potential (2) are strongly compressed along the x and
y directions and have degrees of freedom only along the z
direction. The value of ωxy in (2) is set to 20 au for all
calculations and it is not indicated explicitly hereafter. A
Gaussian potential has been chosen as the confining potential,
that is approximated in the low energy region by a harmonic-
oscillator potential typically used for modeling semiconductor
quantum dots [25, 15, 4]. The Gaussian potential (2) is
characterized by two parameters, namely, by the strength of
confinement ωz and the anharmonicity α [21]. Introducing
anharmonicity into the confining potential is important for
simulating realistic confining potentials [26]. The parameter
ωz is the frequency of the harmonic oscillator obtained by
a quadratic approximation to the Gaussian potential and the

parameter α is defined by α = ωz/D where D is the depth of
the Gaussian potential. The total energies and wavefunctions
of the Hamiltonian (1) have been calculated as the eigenvalues
and eigenvectors of the full CI matrix. The results are presented
in atomic units and can be scaled by the effective Bohr radius
of 9.79 nm and the effective Hartree energy of 11.9 meV for
GaAs semiconductor quantum dots [27, 28].

In order to describe properly the wavefunction of a few
electrons confined in a strongly anisotropic, long and narrow
space a set of properly chosen Cartesian anisotropic Gaussian-
type orbitals (c-aniGTOs) [17] has been adopted as a basis
set to expand the one-electron orbital space. Unlike the
standard Gaussian-type orbitals the c-aniGTOs can be easily
fitted to the anisotropic confining potential by adjusting the
three exponents ζx , ζy and ζz independently. A c-aniGTO
basis set can be transformed into a set of eigenfunctions
of the corresponding three-dimensional anisotropic harmonic
oscillator [17]. Therefore, such a basis set is also
useful for calculating with high accuracy eigenvalues and
eigenfunctions of atoms in strong magnetic fields [29–32] and
of semiconductor quantum dots [33, 34].

In the present study a c-aniGTO basis set has been placed
at the center of the confining potential, i.e. at the origin of
the Cartesian coordinate system. The orbital exponents for
the x and y directions have been chosen as ωxy/2 while those
for the z direction accounting for the Gaussian potential have
been determined in the same way as described in a previous
study [24]. Since ωxy is much larger than ωz , only functions
without nodes along the x and y directions have been selected
and used in the basis sets [18, 24, 21]. The size of the
basis set has been determined through an examination of the
convergence of the energies calculated by stepwise increasing
the size of the basis set. The convergence for three electrons
with (D, ωz) = (4.0, 0.1) is displayed in figure 1. In this
figure the number of basis functions, indicated by the number
in the round brackets, was increased stepwise by adding a new
function with an additional node to the previous basis set. It
is noted that the maximum number of nodes in a function
in the basis set, m, is related to the total number of basis
functions n by m = n − 1. Therefore, in the language of
standard quantum chemical basis sets, the largest basis set of
13 functions in figure 1 includes a function with an angular
momentum quantum number l as large as 12. As shown in
the figure the energy-level structure becomes stabilized as the
number of basis functions increases. The maximum deviation
of the energy levels covered in figure 1 was shown to be smaller
than 3.5 × 10−4 for the results obtained by using basis sets
with 13 and 14 functions, respectively. For the rest of the
calculations in this study for three electrons the basis set of
14 functions has been used.

3. Results and discussion

3.1. Energy spectrum

The energy spectra of three electrons confined by the
quasi-one-dimensional Gaussian potentials with (D, ωz) =
(200.0, 5.0), (40.0, 1.0) and (4.0, 0.1) have been calculated
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Figure 1. Energy spectrum of the low-lying states of three electrons
confined in a quasi-one-dimensional Gaussian potential with
(D, ωz, ωxy) = (4.0, 0.1, 20.0) for different-size basis sets. The
number in the round brackets specifies the total number of basis
functions and the parameter v∗

p specifies the extended polyad
quantum number (see text).

and are displayed in figure 2. The anharmonicity parameter
α is 0.025 for all cases of (D, ωz). This corresponds to
a relatively harmonic shape of the Gaussian potential. The
vertical axis of each of the three energy diagrams is scaled
by ωz , as in our previous study, so that the energy of the
ground state and the excitation energy of four quanta of ωz

are at the same level of the vertical axis, respectively [21].
Therefore, if there is no electron–electron interaction all three
energy spectra will look identical in this representation. The
chosen ωz values of 5.0, 1.0, and 0.1 correspond, respectively,
to three regimes of the strength of confinement, namely, large,
medium, and small [21]. The classification of the three regimes
is defined by the relative importance of the one-electron energy
E1 compared to the two-electron energy E2. The one-electron
energy is scaled by ωz as E1 ∼ ωz , since the eigenenergy of
the one-dimensional harmonic oscillator is given by ωz(n + 1

2 ),
where n denotes the harmonic-oscillator quantum number. A
scaling law for the two-electron energy E2 may be derived
by considering the size of the system as follows [14]: the
characteristic length lz of the system along the z direction is
related to ωz by lz ∼ 1/

√
ωz since the probability distribution

of the one-dimensional harmonic-oscillator ground state with
the frequency ωz is proportional to exp[− 1

2ωz z2]. On the other
hand, since electrons inside the dot would try to keep away
from each other, the inter-electron distance may be estimated
to be roughly equal to the length of the system lz . Therefore,
the two-electron energy, which is inversely proportional to the
length of the system as E2 ∼ 1/ lz , is scaled by ωz as E2 ∼√

ωz . Thus, the one-electron energy E1 dominates the two-
electron energy E2 for wz � 1.0 (large ωz), its contribution to
the total energy becomes similar to E2 for wz ∼ 1.0 (medium
ωz), and it becomes dominated by E2 for wz � 1.0 (small ωz).

As shown in figure 2, the energy-level structure changes
drastically for different strengths of ωz , indicating that the
effect of electron–electron interaction on the spectrum changes
strongly for different ωz as observed previously for the two-
electron case [21]. The energy spectrum for ωz = 5.0

Figure 2. Energy spectrum of three electrons confined by a
quasi-one-dimensional Gaussian potential with different strengths of
confinement, ωz , represented as relative energies from the ground
state. The anharmonicity parameter α of the Gaussian potential is
0.025 for all cases. The doublet and quartet levels are indicated by
green and red lines, respectively, in color or by light and dark lines,
respectively, in grayscale. The vertical axis of each of the three
energy diagrams is scaled by ωz so that the energy of the ground state
and the excitation energy of four quanta of ωz are at the same level of
the vertical axis, respectively.

displayed on the left-hand side of figure 2 shows a band
structure in which energy levels having the same polyad
quantum number vp indicated by the number on the right-
hand side of each band lie close to each other while those
with different values of vp are well separated from each
other. The polyad quantum number was introduced in previous
studies [24, 21] and specifies in the present model the total
number of nodes in the leading configuration of the CI
wavefunctions.

In this large confinement regime of ωz = 5.0, the energy
spectrum is dominated by the one-electron confining potential
and the electron interaction potential acts only as a perturbation
to it, as in the energy spectra of multiply charged atomic
ions. Therefore the zeroth-order Hamiltonian for the system
can be approximated by a sum of the three harmonic-oscillator
Hamiltonians as

H0 =
3∑

i=1

[
−1

2

(
∂

∂zi

)2

+ 1

2
ω2

z z2
i

]
, (3)

where the x and y degrees of freedom are neglected and the
Gaussian potential along the z direction is approximated by a
harmonic oscillator with the frequency ωz . The energy of the
Hamiltonian (3) is written in terms of vp as

En1,n2,n3 = ωz
[
vp + 3

2

]
, (4)

with
vp = n1 + n2 + n3, (5)

where n1, n2, and n3 represent the harmonic-oscillator
quantum numbers for electrons 1, 2, and 3, respectively.
Therefore, energy levels with the same value of vp are
degenerate. It is noted however that not all possible
combinations of (n1, n2, n3) can be realized as quantum states
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due to the Pauli principle. For constructing actual electron
quantum states for the Hamiltonian (3) it is convenient to use a
convention in which spatial orbital configurations are specified
using three harmonic-oscillator quantum numbers, either by
|n1, n2, n3〉 where 0 � n1 < n2 < n3 or by |n1, n2

2〉 where 0 �
n1, n2 and n1 	= n2. The first inequality, 0 � n1 < n2 < n3, is
imposed in order to remove redundancy in the configurations
since permutations of the electron coordinates are performed in
the process of antisymmetrization to form configuration state
functions. The former configuration is constructed of three
different orbitals and can be coupled both to the two types
of doublet spin functions and the one type of quartet spin
function, while the latter configuration has a doubly occupied
orbital and can be coupled only to the one type of doublet spin
function, forming a two-electron singlet between the electrons
residing in the doubly occupied orbital [42]. Therefore the
lowest energy configuration |1, 02〉 is a doublet state with the
polyad quantum number 1 as shown in figure 2. On the
other hand, the lowest quartet state |0, 1, 2〉 has the polyad
number 3 and therefore quartet states first appear in the polyad
manifold of vp = 3. The splitting of levels belonging to the
same vp manifold observed in the energy spectrum of the large
confinement regime of ωz = 5.0 is due to the perturbation by
the electron–electron interaction.

As ωz decreases the splitting of levels within the polyad
manifolds becomes larger and energy levels belonging to
adjacent polyad manifolds start to overlap with each other as
observed in the spectrum for the medium regime of ωz = 1.0.
Nevertheless, the energy spectrum can still be interpreted by
using the polyad quantum number vp since the polyad band
structure is still recognizable, as shown in figure 2. Another
interesting observation made in this figure is that the quartet
levels tend to be located lower than the doublet levels as ωz

becomes smaller. For example, the lowest and second lowest
quartet levels located at the bottom of the polyad manifold of
vp = 3 and 4, respectively, for ωz = 5.0 appear between the
doublet levels of vp = 2 and 3, respectively, for ωz = 1.0.

As ωz decreases further, energy levels belonging to
different polyad manifolds overlap with each other more
strongly and the energy spectrum apparently becomes
complicated. On the other hand, the energy spectrum in
the small confinement regime of ωz = 0.1 displayed on
the right-hand side of figure 2 has a regular and harmonic
band spectrum with a band-gap energy close to ωz . This
observation is similar to the result for the two-electron system
in a previous study, in which it was shown that the energy
spectrum undergoes a transition to a regular and harmonic band
spectrum consisting of singlet–triplet doublets at the small
limit of confinement [21]. It is noted that this energy spectrum
apparently looks similar to that for ωz = 5.0 but differs in
that all levels form nearly degenerate triplets, each of which
consists of a pair of doublet states and a quartet state that have
belonged to different vp manifolds for the larger ωz regimes.
A similar triplet structure was reported previously for three
electrons confined in a quasi-one-dimensional rectangular
potential well [14, 35] as a precursor of the Wigner lattice [20].
Therefore, the observed triplet energy-level structure can be
considered as a general trend for weakly confined quasi-one-
dimensional three-electron systems. It is also noted that the

Figure 3. Three-dimensional Cartesian coordinate system for
displaying the three-electron wavefunctions (upper figure). The z
coordinate of the i th electron is denoted zi (i = 1, 2, 3). The side
length of the red cube is 2 au. The gray plane represents the internal
plane defined by the equation z1 + z2 + z3 = 0. It passes through the
origin of the coordinate system and is normal to the vector (1, 1, 1).
As an example the square-density plot of the three-electron
wavefunction for the lowest quartet 4[0, 3, 0] state is displayed
(lower figure). The density at the surface is 5.0 × 10−2.

number of levels belonging to each band as counted from the
lowest band is 3, 3, 6, 9, and 12 for ωz = 0.1 while the
corresponding number is 1, 2, 4, 6, and 9, respectively, for
ωz = 1.0 and 5.0.

3.2. Three-electron wavefunctions

In order to understand the origin of the regular band structure
with triplets observed in the energy spectrum for ωz =
0.1 in figure 2, the three-electron wavefunctions have been
constructed and displayed in a three-dimensional orthogonal
coordinate system described in the upper part of figure 3. The
coordinate system in this figure is left handed due to a matter
of the graphical software, but the following analysis does not
depend on the choices of the coordinate. The wavefunctions
are plotted as square density in the three coordinates z1, z2

and z3 by integrating over the remaining six spatial coordinates
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of xi and yi (i = 1, 2 and 3) and over the spin coordinates,
respectively. As an example, the square-density plot of the
wavefunction of the lowest quartet state for ωz = 5.0 is
displayed in the lower part of figure 3. The wavefunction
of this lowest quartet state has three nodal planes, which
divide the wavefunction into six lobes. The nodal planes of a
wavefunction are defined, like nodal lines in a previous study,
by the planes along which the density of the wavefunction is
exactly zero. Since this state has three nodal planes, the polyad
quantum number is three, as discussed in the previous section.

In order to make a correspondence between the density
distribution of the wavefunction and the underlying correlated
motion of the three electrons it is helpful to examine the cross-
section of the density distribution by the internal plane, which
is defined by the equation

z1 + z2 + z3 = 0, (6)

and is indicated by a gray plane in the upper part of figure 3.
This plane cuts all six lobes of the wavefunction of the
lowest quartet state in the middle. The meaning of the
internal plane for analyzing the correlated motion of three
electrons becomes clear by transforming the independent-
electron coordinates (z1, z2, z3) into correlated coordinates
(za, zb, zc) by the unitary transformation defined as

za = 1√
3
[z1 + z2 + z3],

zb = 1√
6
[2z1 − z2 − z3],

zc = 1√
2
[z2 − z3].

(7)

The za coordinate defined by the first line is proportional to
the center-of-mass coordinate along which the three electrons
move in the same direction. The internal plane defined by (6)
is normal to za. Therefore, this plane is spanned by the
remaining two coordinates zb and zc . Since the coordinate za

represents the center-of-mass degree of freedom, the internal
plane represents the internal degrees of freedom for the three
electrons. The cross-section of the wavefunction of the lowest
quartet state with respect to this internal plane is displayed in
figure 4. It consists of six parts, as is obvious from inspecting
the nodal pattern of the wavefunction displayed in figure 3.
The three dotted lines dividing the cross-section into six parts
represent the lines of intersection of the three nodal planes with
the internal plane. They coincide in the present case with the
lines along which the electron–electron interaction potential
becomes infinite, namely, z1 − z2 = 0, z1 − z3 = 0, and
z2 − z3 = 0, respectively. The two solid lines represent the
projection of the z2 and z3 axes onto the internal plane. These
two lines are obtained from (7) by putting za = 0 and solving
the simultaneous equations for z2 and z3 as

z2 = 1√
2

[
zc − 1√

3
zb

]
,

z3 = − 1√
2

[
zc + 1√

3
zb

]
.

(8)

Along the z2 axis the z3 coordinate is always zero. Therefore,
the z2 line in figure 4 is obtained by putting z3 = 0 in the

Figure 4. Cross-section with respect to the internal plane of the
square-density plot of the wavefunction of the lowest quartet
4[0, 3, 0] state displayed in figure 3. The vertical and horizontal axes
represent the internal coordinates of the electrons defined by
zb = (2z1 − z2 − z3)/

√
6, and zc = (z2 − z3)/

√
2, respectively. The

three green dotted lines represent the lines along which the
electron–electron interaction potentials become infinity. The two red
lines labeled by arrows z2 and z3 represent the projection of the z2

and z3 axes onto the internal plane.

second line of equations (8), which results in zc + 1√
3
zb = 0.

Similarly, the z3 line is obtained by putting z2 = 0 in the
first line of equations (8), resulting in zc − 1√

3
zb = 0. By

using these two lines, that are the projection of the z2 and z3

axes onto the internal plane, respectively, each point on the
internal plane (zc, zb) can be translated into the independent-
electron coordinates (z1, z2, z3) by the following procedure.
As demonstrated in figure 4, the projection of point A parallel
to the two solid lines onto these two lines themselves results
in the coordinates A2 and A3, respectively. The z2 and z3

coordinates of point A are obtained by scaling the resultant
coordinates A2 and A3 by 1√

2
. From (6) the coordinate of

electron 1 is obtained as z1 = −(z2 + z3). In the case of
the above example the z2 coordinate of point A takes a positive
value, while the z3 coordinate takes a negative value with the
same magnitude as z2, resulting in a zero value for the z1

coordinate. Therefore, the configuration of the three electrons
corresponding to point A is that electron 2 resides at a point
on the positive z axis, electron 3 at the point on the negative z
axis with the same distance from the origin as electron 2, and
electron 1 resides at the origin of the z axis.

The assignment of quantum numbers to the wavefunction
of the lowest quartet state displayed in figure 3 can be made by
inspecting the nodal pattern of the three-dimensional square-
density plot of wavefunction and its cross-section with respect
to the internal plane as follows. The wavefunction of this state
has no nodal plane along the za coordinate. Therefore, the
quantum number for the center-of-mass mode, nc.m., is zero.
On the other hand, the wavefunction has three nodal planes
intersecting the internal plane, indicating that three quanta can
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Figure 5. The square-density plot of the three-electron wavefunction
for the second lowest quartet state (a) and the third lowest quartet
state (b) with their assignments 4[1, 0, 3] and 4[0, 1, 3], respectively.
The side length of the red cube and the density at the surface (in au)
are 2 and 5.0×10−2, respectively.

be assigned to some internal degrees of freedom. The cross-
section has a sixfold axial symmetry and each center of the
six lobes can be obtained by stepwise rotating point A by
60◦ anticlockwise. By applying an analysis similar to that
made for point A to the other five centers, the configuration of
the three electrons, (z1, z2, z3), corresponding to each center
is obtained as (0, a,−a), (a, 0,−a), (a,−a, 0), (0,−a, a),
(−a, 0, a) and (−a, a, 0), where the first is the configuration
of point A with a > 0. This indicates that the nodal
pattern in figure 4 corresponds to a permutational motion of
three electrons. Therefore, the wavefunction of the lowest
quartet state has three quanta in the permutation mode np.
Since the internal plane is two dimensional, there should be
another mode that is not excited in the lowest quartet state.
The square-density plot of the wavefunctions for the second
and third lowest quartet states is displayed in figures 5(a)
and (b), respectively. The nodal pattern of the wavefunction
for the second lowest quartet state, figure 5(a), shows an extra
nodal plane other than the three nodal planes of the lowest
quartet state. This nodal plane is perpendicular to the za

coordinate. Therefore, it represents a quantum state that is
obtained from the lowest quartet state by exciting one quantum
into the center-of-mass mode. On the other hand, the nodal
pattern of the third lowest quartet state, figure 5(b), shows a
new nodal plane which intersects the internal plane circularly.
Since this nodal plane represents a radial excitation within
the internal plane, the electron mode corresponding to this
nodal plane represents a breathing motion of the three electrons
in which the inter-electron distances change by keeping their
relative ratios fixed. Therefore, this new internal mode may
be termed as the breathing mode and its quantum number will
be denoted by nb. These three-electron modes, the center-of-
mass, permutation, and breathing modes, can be regarded as
the normal modes of the quartet states of three electrons, since
the quantum states can be specified uniquely by counting the
number of nodal planes independently for the three modes.
Therefore, the three-electron quartet wavefunctions will be
assigned hereafter by the notation 2S+1[nc.m., np, nb] where
2S + 1 denotes the spin multiplicity. By using this notation
the lowest, second lowest and third lowest quartet states are

Figure 6. The correspondence of the lowest four energy levels of
three electrons confined in a quasi-one-dimensional Gaussian
potential with the same anharmonicity α as in figure 2. The red and
green levels represent doublet and quartet states, respectively. The
vertical axis of each of the energy-level diagrams is scaled by ωz so
that the excitation energy of one quantum of ωz meets at the same
height for different ωz .

assigned as 4[0, 3, 0], 4[1, 3, 0] and 4[0, 3, 1], respectively. It
is noted that the polyad quantum number vp is calculated from
these three quantum numbers, nc.m., np and nb, by

vp = nc.m. + np + 2nb. (9)

The quantum number for the breathing mode contributes to the
sum twice as many as that for the center-of-mass mode and
the permutation mode, since the nodal plane of the breathing
mode cuts the two-dimensional internal plane circularly like
the breathing mode for the Hartree–Fock orbitals in quasi-two-
dimensional circular quantum dots [24].

3.3. Interpretation of spectra

The correspondence of the lowest four energy levels of three
electrons for different ωz is displayed in figure 6. The
assignment in this figure for the lowest quartet state is the
same as defined in the previous section, while those for the
three doublet states have been made by inspecting the nodal
pattern of their wavefunctions at ωz = 0.1. The vertical
energy axis is scaled in the same way as in figure 2 so that
the excitation energy of one quantum of ωz is at the same level
for different ωz . It can be seen from figure 6 that the lowest two
doublet states, 2[0, 3, 0]∗a and 2[0, 3, 0]∗b, and the lowest quartet
state 4[0, 3, 0] get closer as ωz decreases and finally become
degenerate at ωz = 0.1. On the other hand, the position of the
third lowest doublet state 2[1, 3, 0]∗a is relatively insensitive to
a variation of ωz , indicating that the excitation energy from the
lowest doublet state scaled by ωz is not affected strongly by the
variation of ωz .

In order to understand these observations, i.e. the
degeneracy among the two doublet and one quartet states for
small ωz and the insensitivity of the position of the third
lowest doublet state with respect to the change of ωz , the
wavefunctions of the lowest four states for different ωz have
been constructed and displayed in figure 7. In this figure the
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Figure 7. The square-density plot of the three-electron
wavefunctions for the lowest four states displayed in figure 6 for
different strengths of confinement ωz . The density at the surface and
the side length of the cube (in au) are (5.0×10−2, 2.0),
(1.0×10−2, 4.0) and (1.0×10−4, 16.0) for ωz = 5.0, 1.0 and 0.1,
respectively.

wavefunctions are plotted in a similar way as in figure 3 but
the density ρ at the surface of each wavefunction and the side
length d of the cube differ for different ωz so that the nodal
patterns in the wavefunctions can be clearly identified. The
chosen values are (ρ, d) = (5.0×10−2, 2.0), (1.0×10−2, 4.0)

and (1.0×10−4, 16.0) for ωz = 5.0, 1.0 and 0.1, respectively.
The wavefunction of the lowest quartet state for ωz = 5.0,

displayed uppermost in the left side column of figure 7, has
three nodal planes as explained in the previous section. In
general, the spatial part and the spin part of wavefunctions for
quartet states of three electrons are separated from each other
and the spin part of the wavefunctions is totally symmetric
with respect to interchanging any two spin coordinates.
Therefore, the spatial part of quartet wavefunctions should
be antisymmetric with respect to an interchange of any two-
electron coordinates because of the Pauli exclusion principle. It
is noted that the transposition within two-electron coordinates,
(z1, z2), (z1, z3), and (z2, z3), in a spatial wavefunction can be
performed by reflecting the wavefunction with respect to the
plane along which the electron–electron interaction potentials
become infinite, namely z1 − z2 = 0, z1 − z3 = 0, and
z2 − z3 = 0, respectively. Therefore, the quartet wavefunction
has to always have these three planes as nodal planes, since
it has to change signs with respect to a reflection about any
of these three planes. In a traditional terminology these three
nodal planes may be termed as Fermi holes or exchange holes
of indistinguishable Fermi particles.

On the other hand, in the case of doublet states of three
electrons the spatial and spin parts of the wavefunctions are

mixed and not separable in general. Therefore, unlike quartet
wavefunctions, the doublet wavefunctions displayed in figure 7
for ωz = 5.0 do not have the three nodal planes of Fermi
holes, since the spatial part of the wavefunctions does not
change its signs with respect to a reflection about any of these
three planes. Because of this nonseparability it is difficult to
assign quantum numbers to the doublet wavefunctions from
their nodal pattern in the spatial distribution. The assignments
of quantum numbers to the three lowest doublet wavefunctions
in figure 7, 2[0, 3, 0]∗a, 2[0, 3, 0]∗b, and 2[1, 3, 0]∗a, respectively,
have been therefore made by inspecting the nodal pattern of
the wavefunctions for the small limit of confinement ωz = 0.1,
at which the wavefunctions of the doublet states have a clear
nodal pattern for the reason which will be given below. Instead
of having a clear nodal pattern the wavefunction of the lowest
doublet state at ωz = 5.0 has a sharp decrease of density at the
center, as displayed at the bottom of the left-hand column of
figure 7. The wavefunction of the second lowest doublet state
at ωz = 5.0 also has a sharp decrease of density at the center
with a larger magnitude. These sharp decreases of density
for the lowest and second lowest doublet states are explained
by the following considerations: the lowest and the second
lowest doublet states have the leading configurations |1, 02〉
and |0, 12〉, respectively. The lowest one-electron orbital bound
in a one-dimensional harmonic-oscillator potential has no node
while the second lowest orbital has one node at the center.
Since both of the configurations, |1, 02〉 and |0, 12〉, have one
and two electrons that have a node at the origin of the z axis,
respectively, the density distribution of their wavefunctions
about the origin should be very small, with a magnitude for
|0, 12〉 smaller than for |1, 02〉. Therefore, the sharp decrease
of density observed at the center of these two lowest doublet
wavefunctions can be interpreted as a remnant of the node of
the second lowest one-electron orbital.

The nodal pattern of the wavefunction of the third lowest
doublet state at ωz = 5.0 has one significant difference
compared to the other doublet wavefunctions in that it has a
nodal plane along a line perpendicular to the internal plane,
namely, the za axis. Aside from this node the wavefunction
of the third doublet state has a similar nodal pattern as
the lowest doublet state. Therefore, the third doublet state
is obtained from the lowest doublet state by exciting one
quantum into the center-of-mass mode na . According to the
generalized Kohn theorem [36–38, 25, 39–41], if the confining
potential is purely harmonic, the energy for a center-of-mass
excitation is exactly equal to the strength of the confinement,
irrespective of the number of electrons and the form of
electron–electron interaction. In the present case the Gaussian
confining potential is approximated well for the low energy
region by a harmonic-oscillator potential with ωz . Therefore,
the excitation energy from the lowest doublet state to the third
doublet state is roughly equal to ωz for all regimes of ωz . This
explains the relative insensitivity of the position of the third
doublet state with respect to the change of ωz as observed in
figure 6.

Another interesting observation made in the wavefunc-
tions of figure 7 is that the wavefunctions of the two lowest
doublet states for ωz = 0.1 have almost identical spatial distri-
butions in spite of having significant differences for larger ωz .
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Table 1. Zeroth-order energy levels for the large ωz regime.

vp Np
a |n1, n2

2〉 |n1, n2, n3〉
1 1 |1, 02〉
2 2 |2, 02〉

|0, 12〉
3 4 |3, 02〉 |0, 1, 2〉
4 6 |4, 02〉 |0, 1, 3〉

|2, 12〉
|0, 22〉

5 9 |5, 02〉 |0, 1, 4〉
|3, 12〉 |0, 2, 3〉
|1, 22〉

a Number of levels belonging to
each vp manifold.

By following the evolution of the two lowest doublet wave-
functions from ωz = 5.0 to 0.1, it can be seen that the density
of the wavefunctions tends to decrease along the three nodal
planes of the Fermi holes, namely z1 − z2 = 0, z1 − z3 = 0
and z2 − z3 = 0, as ωz decreases, and that at ωz = 0.1 the
three planes become apparently the nodal planes of the doublet
wavefunctions, although the sign of the wavefunctions should
not change with respect to a reflection about these three planes.
In order to understand the origin of the decrease of density in
the doublet wavefunctions along these three nodal planes, the
cross-section of the sum of the one- and two-electron potential
functions in the Hamiltonian (1) with respect to the internal
plane,

V (zb, zc) = 1

2
ω2

z [z2
b + z2

c] + 2

|√6zb + √
2zc|

+ 2

|√6zb − √
2zc|

+ 1

|√2zc|
, (10)

where the Gaussian potential is approximated by a harmonic-
oscillator potential with ωz , has been calculated and displayed
in figure 8 for ωz = 5.0, 1.0 and 0.1, respectively. In all
three cases displayed in figure 8 the maximum potential height
is 20 × ωz and the domain of the coordinates zb and zc is
chosen such that for the one-dimensional harmonic-oscillator
potential the classical turning points for an energy of 20 × ωz

coincide with the limits of the domain. In this representation
the energy contours for the one-electron part of the potential,
i.e. the first term on the right-hand side of (10), are identical for
different values of ωz . Therefore, differences in the contours
among different ωz must be ascribed to the electron–electron
interaction potentials. It is noted that the three lines separating
the contours into six regions are the potential walls of the
electron–electron interaction potentials along which the second
to fourth terms on the right-hand side of (10) become infinite.
As shown in figures 8(a)–(c) these potential walls become
thicker as ωz decreases from 5.0 to 0.1. This indicates that
the wavefunctions bound in this potential are influenced by
the electron–electron interaction potentials more strongly for
smaller ωz .

In the large ωz regime of figure 8(a) the potential walls
of the electron–electron interaction are so thin that electrons
can tunnel through them easily. Therefore, the corresponding

Figure 8. The two-dimensional contour plot of the sum of the
harmonic oscillator and of the electron repulsion potentials with
respect to the internal plane for ωz = 5.0 (a), 1.0 (b), and 0.1 (c).
The maximum potential height displayed is ωz × 20 for all cases.
The three lines separating the contours into six regions represent the
potential walls of the electron repulsion potentials.

wavefunctions are influenced little by the potential walls, as
displayed in figure 7. The tunneling manifests itself as splitting
of the degenerate zeroth-order levels of each vp manifold of (4)
as displayed in figure 2 for the energy spectrum of ωz = 5.0.
The degeneracy pattern for each vp manifold can be obtained
by counting the number of possible orbital configurations as
summarized in table 1. For the lowest two vp manifolds of
vp = 1 and 2, respectively, only the configuration of the
type |n1, n2

2〉 is allowed. This configuration can be coupled
only to the doublet spin function that forms a two-electron
singlet for the pair of electrons 2 and 3 occupying orbital n2,
as mentioned earlier. An explicit form of the spin function
can be written by assuming that the magnetic quantum number
M of the spin function takes the highest value, i.e. 1

2 for the
doublet state and 3

2 for the quartet state, respectively. This
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assumption does not lose generality since the eigenstates of the
present spin-free Hamiltonian (1) should be independent of the
orientation of the total spin vector. With this assumption the
explicit form of the spin function for quartet states is written as
|ααα〉. In the case of doublet states, on the other hand, there
are two linearly independent spin functions for the spin state
of |S, M〉 = | 1

2 ,
1
2 〉, namely, 1√

2
α(1)(α(2)β(3) − β(2)α(3))

and 1√
6
(2β(1)α(2)α(3) − α(1)α(2)β(3) − α(1)β(2)α(3)),

respectively [43]. The former spin function (denoted hereafter
as |a〉 for brevity) is a product of the singlet spin function for
the electron pair (2, 3) and the α spin function for electron
1, and forms the two-electron singlet for the electron pair 2
and 3 denoted above. Therefore, the orbital configuration
of the type |n1, n2

2〉 can be coupled to the |a〉 spin function,
since this function simply changes its signs with respect to
an interchange of electron coordinates 2 and 3. On the other
hand, it cannot be coupled to the latter spin function (denoted
hereafter by |b〉), since |b〉 does not change its sign but behaves
in a more complicated way with respect to the transposition
of electron coordinates 2 and 3. Therefore, the total number
of levels for the first and second manifolds in table 1 is
calculated to be Np = 1 and 2, respectively. In the case of the
third manifold the two configurations |3, 02〉 and |0, 1, 2〉 are
allowed. From the first configuration of |3, 02〉 only one level
can be derived, as in the case of the configurations |1, 02〉 and
|0, 12〉. On the other hand, the second configuration |0, 1, 2〉
can be coupled both to the two doublet spin functions |a〉 and
|b〉 and to the one quartet spin function |ααα〉, resulting in a
total of three levels. Therefore, the total number of levels for
the third manifold is determined to be Np = 4, as shown in
table 1. Similarly, the total number of levels for the fourth and
fifth manifolds is calculated to be Np = 6 and 9, respectively,
all of which are consistent with the number of levels indicated
in the energy spectrum of figure 2 for ωz = 5.0.

As ωz decreases, the potential walls become thicker, as
displayed in figure 8(b). Therefore, the doublet wavefunctions
tend to have lower density along these potential walls, as
shown in figure 7, in order to lower their energy. On the
other hand, the quartet wavefunction is affected little by the
potential walls, since its density along the potential walls is
exactly zero because of the exclusion principle. Therefore, the
energy level of the quartet state is more stable than those of the
doublet states with respect to the decrease of ωz . This results
in a decrease of the energy difference between the quartet and
doublet levels, as shown in figure 6.

In the small confinement regime of ωz = 0.1 the potential
walls become so thick that they can no longer be treated as
a perturbation to the confining potential, but become barriers
through which electrons can hardly tunnel. Consequently, the
wavefunctions of the doublet states have almost no density
along the potential walls, as observed in figure 7, and little
difference can be seen between the wavefunctions of the
lowest two doublet states and the lowest quartet 4[0, 3, 0] state
except for their phases. By using the similarity of density
distributions to the quartet wavefunction the wavefunctions
of the lowest and the second lowest doublet states can be
assigned as 2[0, 3, 0]∗a and 2[0, 3, 0]∗b, respectively, where a
and b denote abbreviations for distinguishing different doublet

spin states and ∗ denotes that it is an extended assignment.
The reason for the three states 2[0, 3, 0]∗a , 2[0, 3, 0]∗b and
4[0, 3, 0] having almost the same energy regardless of their
phase differences can be rationalized as follows: the nodal
pattern of the wavefunction of the lowest quartet 4[0, 3, 0] state
can be interpreted as a spatial configuration of three electrons
in which one electron resides at the origin of the z axis while
the other two electrons reside at either the positive or the
negative z axis, respectively, as discussed in section 3.2. In
the weak confinement regime of ωz = 0.1 the mean inter-
electron distance is very large. Therefore, the energy of the
three electrons depends little on the mutual orientation of
their electron spins. A similar argument can be applied to
more than three electron cases. In the case of four electrons
the number of electron–electron interaction potentials is six,
which is calculated as the number of combinations choosing
two electrons out of four different electrons. This number
is equal to the sum of the numbers of linearly independent
spin functions of four electrons, namely, two spin functions for
singlet states, three for triplet, and one for quintet. At the limit
of small confinement ωz all these spin states of four electrons
become degenerate. Therefore the lowest energy level of four
electrons is sixfold degenerate, with v∗

p = 6 [44].
Finally, the origin of the harmonic band structure of the

energy spectrum with regular intervals of ωz in the small ωz

regime can also be rationalized by making use of the contour
map of the potential function V (zb, zc) displayed in figure 8.
The Hamiltonian (1) can be written by using the correlated
electron coordinates defined by equations (7) within the one-
dimensional harmonic approximation of the confining potential
as

Hharm
1D = −1

2

[
∂2

∂z2
a

+ ∂2

∂z2
b

+ ∂2

∂z2
c

]
+ 1

2
ω2

z

[
z2

a + z2
b + z2

c

]

+ 2

|√6zb + √
2zc|

+ 2

|√6zb − √
2zc|

+ 1

|√2zc|
. (11)

In this Hamiltonian the za coordinate, which is proportional
to the center-of-mass coordinate of the three electrons, is
decoupled from the other degrees of freedom since it does
not appear in the electron–electron interaction potentials.
Therefore, the center-of-mass mode generates simply the
harmonic energy spectrum of ωz as known from the
generalized Kohn theorem. By omitting in equation (11)
the za dependent terms, it becomes the Hamiltonian of the
two-dimensional isotropic harmonic oscillator with modified
electron–electron interaction potentials. The corresponding
potential is identical to V (zb, zc) displayed in figure 8. In the
small confinement regime of figure 8(c) the wavefunctions of
electrons bound in this potential have almost no density along
the three walls of the electron–electron interaction potentials. It
is noted that wavefunctions satisfying this boundary condition
are eigenfunctions of the two-dimensional isotropic harmonic
oscillator with the angular momentum |l| = 3. This constraint
on the angular momentum guarantees that the wavefunctions
have three nodal lines with an equiangular interval of 120◦.
The simultaneous eigenstates of the two-dimensional isotropic
harmonic-oscillator Hamiltonian,

Hharm
int,0 = −1

2

[
∂2

∂z2
b

+ ∂2

∂z2
c

]
+ 1

2
ω2

z

[
z2

b + z2
c

]
, (12)
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and of the angular momentum operator,

l̂ = 1

i

[
zc

∂

∂zb
− zb

∂

∂zc

]
, (13)

can be obtained by using the circular boson operators [45],
defined in the present case by

â± = 1√
2
[âc∓iâb],

â†
± = 1√

2
[â†

c±iâ†
b],

(14)

where âb, âc and their Hermitian conjugates are the standard
harmonic-oscillator ladder operators defined by

âk = 1√
2

[√
ωz zk + 1√

ωz

∂

∂zk

]
, (15)

etc, for k = b and c. It can be shown that the
circular boson ladder operators of equations (14) satisfy the
usual commutation relation of the harmonic-oscillator ladder
operators such as [â±, â†

±] = 1. By using these circular
boson operators the two-dimensional harmonic-oscillator
Hamiltonian (12) and the angular momentum operator (13) are
rewritten as

Hharm
int,0 = ωz[â†

+â+ + â†
−â− + 1], (16)

and
l̂ = â†

+â+ − â†
−â−, (17)

respectively. Therefore, the simultaneous eigenstates of the
operators (16) and (17) are the direct product of the circular
boson number states, |n+〉|n−〉. The eigenvalues of the
operators are calculated explicitly as

Eharm
int,0 = ωz[n+ + n− + 1], (18)

and
l = n+ − n−, (19)

respectively, where n+ and n− are the eigenvalues of the
number operator for the + and − bosons, respectively. By
choosing |l| = 3k (k = 1, 2, . . .), the eigenenergy of the
Hamiltonian (11) in the small ωz regime is approximated by
the following closed form:

Eharm
1D,small = ωz

[
na + 2n + 3k + 3

2

]
, (20)

where n = 0, 1, 2, . . . and na denotes the harmonic-oscillator
quantum number for the center-of-mass mode. It is noted that
the three quantum numbers na , n, and k are related to the three
normal-mode quantum numbers defined in the previous section
by nc.m. = na , nb = n, and np = 3k, respectively. The
result (20) shows that energy levels having the same value of
v∗

p = na + 2n + 3k have the same energy and that the energy
levels form an equispaced band structure with an energy gap
of ωz . The new quantity v∗

p is the extended polyad quantum
number, which is obtained by counting the total number of
nodal planes in the wavefunction, including the three planes
of the potential walls for doublet wavefunctions.

Table 2. Possible combinations of quantum numbers (na, n, k) in
the energy formula (20) for the small ωz regime.

v∗
p N∗

p
a na n k

3 3 0 0 1

4 3 1 0 1

5 6 0 1 1
2 0 1

6 9 0 0 2
1 1 1
3 0 1

7 12 1 0 2
0 2 1
2 1 1
4 0 1

a Number of levels
belonging to each v∗

p

manifold.

The degeneracy pattern of the v∗
p manifolds, i.e. 3, 3, 6,

9, and 12, indicated in the energy spectrum of figure 2 for
ωz = 0.1, is obtained by counting the possible combinations
of the three quantum numbers (na, n, k) for a given value of
v∗

p as summarized in table 2. For the lowest two manifolds of
v∗

p = 3 and 4 only the two combinations (0, 0, 1) and (1, 0, 1)

are possible. Since each combination can be coupled to all
three spin functions, i.e. two doublets and one quartet, the
resulting number of states is three for both v∗

p = 3 and 4. For
the higher manifolds of v∗

p = 5, 6, and 7 the number of possible
combinations is two, three, and four, respectively. Therefore,
the total number of states belonging to these manifolds is 6,
9, and 12, respectively. All these numbers agree with the
number of states indicated in the energy spectrum of figure 2
for ωz = 0.1.

3.4. Anharmonic case

The energy spectra of three electrons confined by the
quasi-one-dimensional Gaussian potentials with (D, ωz) =
(50.0, 5.0), (10.0, 1.0) and (1.0, 0.1) have been calculated
and are displayed in figure 9 in the same way as in figure 2.
The anharmonicity parameter is α = 0.1 for all cases of
(D, ωz), which corresponds to a relatively anharmonic shape
of the Gaussian potential. The value for the anharmonicity
parameter has been chosen such that all energy levels displayed
in figure 9 are lying below the first ionization limit [24]. When
the anharmonicity parameter α becomes larger than this value,
some energy levels close to the upper limit of the energy range
become unbound. The energy spectra for ωz = 5.0 and
1.0 displayed in figure 9 show a band structure very similar
to that of the corresponding spectra displayed in figure 2.
They are characterized by the polyad quantum number vp,
as denoted in the figure. The energy differences between
adjacent polyad manifolds are slightly smaller for the spectra
shown in figure 9 than for those displayed in figure 2, which
is due to the larger anharmonicity of the Gaussian potential
for the spectra shown in figure 9. In the case of ωz = 0.1, a
large difference can be observed between the spectra shown in
figures 2 and 9 in the higher energy region above E = 0.3. In
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Figure 9. Energy spectrum of three electrons confined by a
quasi-one-dimensional Gaussian potential with different strengths of
confinement ω. The anharmonicity parameter α of the Gaussian
potential is 0.1 for all cases. See the caption of figure 2 for other
remarks.

the energy spectrum displayed in figure 2, the polyad manifold
of v∗

p = 7 is energetically well separated both from the
lower- and the higher-lying manifolds, while in the spectrum
shown in figure 9 it lies energetically close to the higher-
lying manifold. Therefore, effects of coupling between energy
levels of different v∗

p manifolds may appear in the electronic
wavefunctions.

In order to understand the effect of anharmonicity on the
wavefunctions, the square density of the wavefunctions for the
four quartet states in the polyad manifold of v∗

p = 7, namely,
4[2, 3, 1], 4[0, 3, 2], 4[1, 6, 0], and 4[0, 6, 0], respectively, is
displayed in figure 10 for α = 0.0 (harmonic) and 0.1
(anharmonic). Unlike the wavefunctions displayed in figure 7,
the sign of the wavefunctions, positive or negative, is indicated
in figure 10 by red and blue surfaces, respectively. The phase
information can be graphically displayed, since the orbital and
spin parts of the quartet wavefunctions are separated from each
other. As shown in this figure, the assignment of quantum
numbers to the wavefunctions can be made uniquely for the
harmonic case by counting the number of nodal planes for
the three normal modes, i.e. the center-of-mass, permutation
and breathing modes. On the other hand, in the case of
the wavefunctions for the anharmonic case the nodal planes
dividing the wavefunctions are neither simple planes as for the
center-of-mass and permutation modes nor cylindrical surfaces
as for the breathing mode, but are distorted significantly. The
effect of deformation of the nodal planes seems to be larger
for the states having excitation into the center-of-mass mode
than for the other states. For example, the nodal pattern of the
wavefunction of the 4[0, 3, 2] state, which has no excitation
into the center-of-mass mode, lie in the internal plane both for
the harmonic and anharmonic cases. On the other hand, in
the case of the states having excitation into the center-of-mass
mode, such as 4[4, 3, 0] and 4[2, 3, 1], it is difficult to count the
number of nodal planes along the center-of-mass coordinate
for the anharmonic case since it is hard to judge how the nodal
planes divide the wavefunction along which coordinate. These

Figure 10. The square-density plot of the three-electron
wavefunctions for the four quartet states in the polyad manifold of
v∗

p = 7, 4[2, 3, 1], 4[0, 3, 2], 4[1, 6, 0], and 4[0, 6, 0], respectively, for
α = 0.0 (harmonic) and 0.1 (anharmonic). The strength of
confinement ωz is 0.1 for all cases. The density at the surface and the
side length of the cube (in au) are 1.0×10−4 and 16, respectively.
The red and blue surfaces represent the positive and negative phases
of the wavefunctions, respectively.

observations indicate that the center-of-mass mode is no longer
separable from the internal modes and suggests that a transition
from the three normal modes to some new modes occurs as a
result of the large anharmonicity in the confining potential, as
observed in a previous study for two electrons confined in a
quasi-one-dimensional nanostructure [21].

4. Summary

In order to understand general trends of energy spectra
of quasi-one-dimensional multi-electron quantum dots, the
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energy spectra and wavefunctions of three electrons confined
by a quasi-one-dimensional Gaussian potential have been cal-
culated for different strengths of confinement and anharmonic-
ity by using the quantum chemical full configuration interac-
tion method employing reduced Cartesian anisotropic Gaus-
sian basis sets. The most important results of the present study
are summarized as follows.

The energy spectra for a nearly harmonic Gaussian
potential have been calculated and analyzed for three regimes
of confinement strength ωz , namely, strong (ωz = 5.0),
medium (ωz = 1.0) and weak (ωz = 0.1). For the
strong confinement the energy spectrum shows a regular band
structure with a band-gap close to ωz . The energy levels of each
band are well localized and are characterized by the polyad
quantum number vp, defined as the number of the nodal planes
dividing the wavefunctions. For the medium confinement the
energy spectrum also shows a band structure characterized by
vp, but the splitting of the energy levels belonging to the same
vp manifold is so large that adjacent polyad manifolds get
close to each other or even overlap. For the small confinement
strength two doublet states and one quartet state which belong
to different vp manifolds of the larger ωz regimes become
nearly degenerate and form a triply degenerate energy level.
The energy spectrum in this small confinement regime recovers
a band structure with a band-gap energy of about ωz , as
observed for the large confinement regime, but each band is
characterized by the extended polyad quantum number v∗

p .
The square density of the wavefunctions has been plotted

in the three-dimensional (z1, z2, z3) space and its nodal pattern
has been examined. From the analysis of the cross-section of
the wavefunctions with respect to the internal plane it has been
shown that the wavefunctions of quartet states can be assigned
uniquely by counting the number of nodal planes for the three
normal modes, namely, the center-of-mass, the permutation
and the breathing modes. All quartet wavefunctions have
three nodal planes originating from exchange holes defined
by the equations z1 − z2 = 0, z2 − z3 = 0 and z3 −
z1 = 0 along which the electron–electron interaction potentials
become infinite. In case of the wavefunctions of doublet
states, on the other hand, assignment of quantum numbers
based on their nodal pattern is not straightforward, except for
the center-of-mass mode, since the spatial part and the spin
part of the wavefunctions are mixed and not separable. The
density of the doublet wavefunctions along the three nodal
planes of the quartet wavefunctions becomes smaller as ωz

decreases and it becomes negligibly small for ωz = 0.1. The
doublet wavefunctions at ωz = 0.1 have the same number
of nodal lines as their counterpart quartet wavefunction of
the degenerate triplet using the extended assignment. Their
nodal patterns become almost identical to each other except for
their phases. The sum of the one- and two-electron potentials
projected onto the internal plane shows that the decreasing
density in the doublet wavefunctions along the three nodal
planes of the exchange holes for decreasing ωz is caused by the
increasingly stronger potential walls of the electron–electron
interaction along these planes.

The energy spectra for a strongly anharmonic Gaussian
potential have also been calculated for the same three regimes

of confinement strength ωz as for the nearly harmonic case. For
strong and medium confinement the energy spectra look quite
similar to those of the nearly harmonic case, while for weak
confinement of ωz = 0.1 the spectrum shows an irregular level
structure in the high energy region above �E > 3.0. The nodal
planes of the wavefunctions in this high energy region become
curved and it becomes difficult to assign these wavefunctions
by counting the number of nodal lines for the three normal
modes, suggesting a transition from the normal modes to other
localized modes.
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